Semantic representation bias in high-stakes settings: risks and opportunities

Maria De-Arteaga

Joint PhD Candidate, Machine Learning & Public Policy

(Starting July 2020) Assistant Professor, McCombs School of Business, UT Austin

 \equiv WIRED

BUSINESS CUL

CULTURE GEAR IDEAS SCIENCE MORE \checkmark SIGN IN

SUBSCRIBE

Will Machines Be Able to Tell When Patients Are About to Die?

The New York Times

TheUpshot

ROBO RECRUITING

Can an Algorithm Hire Better Than a Human?

Can an Algorithm Tell When Kids Are in Danger? \equiv WIRED

BUSINESS CUL

CULTURE GEAR IDEAS SCIENCE MORE \checkmark

SUBSCRIBE

Will Machines Be Able to Tell When Patients Are About to Die?

The New York Times

TheUpshot

ROBO RECRUITING

Can an Algorithm Hire Better Than a Human?

Can an Algorithm Tell When Kids Are in Danger?

SIGN IN

Machines are better than humans at making predictions. [Meehl'54, Dawes'89, Grove'00]

BUSINESS NEWS OCTOBER 9, 2018 / 11:12 PM / A YEAR AGO

Amazon scraps secret AI recruiting tool that showed bias against women

AUTOMATING -INEQUALITY

HOW HIGH-TECH TOOLS PROFILE, POLICE, AND PUNISH THE POOR

The Washington Post Democracy Dies in Darkness

Health

Sections ≡

Racial bias in a medical algorithm favors white patients over sicker black patients

LTURE GEAR ID<mark>eas science more</mark>

SUBSCRIBE

Will Machines Be Able to Tell When Patients Are About to Die?

What are the **risks** and the **opportunities** of machine learning for decision support in high-stakes settings?

• ancepsion

ROBO RECRUITING

Can an Algorithm Hire Better Than a Human?

When Kids Are in Danger

Outline

1. Risks of compounding injustices

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019) <u>Maria De-Arteaga</u> (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Adam Kalai (MSR)

2. What are the biases in my word embedding?

What are the biases in my word embedding? (AIES 2019) Nathaniel Swinger⁼ (Lexington HS), <u>Maria De-Arteaga</u>⁼ (CMU), Neil Thomas Heffernan IV (Shrewsbury HS), Mark Leiserson (UMD), Adam Kalai (MSR)

3. Using bias to fight bias

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019) Alexey Romanov (UMASS), <u>Maria De-Arteaga</u> (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna Rumshisky (UMASS), Adam Kalai (MSR)

Alexey Romanov

Adam Kalai

Hanna Wallach

Jennifer Chayes

Christian borgs

Alexandra Chouldechova

Krishnaram Kenthapadi

Sahin Geyik

Max Leiserson

Nathaniel Swinger, Neil Thomas Heffernan IV

An artificially intelligent headhunter?

Get ready, this year your next job interview may be with an A.I. robot

An artificially intelligent headhunter?

Can we **quantify** risks of gender bias in automated recruiting? Can we **mitigate** the bias?

n p r		5,220 views Jul 12, 2018, 07:00am A SIGN IN SHOP VIC Welcome To The Age Of
	science Now A Hire, I	Recruiting Automation
		Algorithms Are Deciding Whom To Based On Voice

Get ready, this year your next job interview may be with an A.I. robot 9

Copyright @ 2020 Maria De-Arteaga

An artificially intelligent headhunter?

Can we **quantify** risks of gender bias in automated recruiting? Can we **mitigate** the bias?

Findings:

- Compounding gender imbalances in large-scale study [FAT*'19]
- Leverage biases present in word embeddings [AIES '19] to mitigate biases without access to protected attributes [NAACL '19]

interview may be with an A.I. robot ₁₀

Outline

1. Risks of compounding injustices

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019) <u>Maria De-Arteaga</u> (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Adam Kalai (MSR)

2. What are the biases in my word embedding?

What are the biases in my word embedding? (AIES 2019) Nathaniel Swinger⁼ (Lexington HS), <u>Maria De-Arteaga</u>⁼ (CMU), Neil Thomas Heffernan IV (Shrewsbury HS), Mark Leiserson (UMD), Adam Kalai (MSR)

3. Using bias to fight bias

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019) Alexey Romanov (UMASS), <u>Maria De-Arteaga</u> (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna Rumshisky (UMASS), Adam Kalai (MSR)

Ω

Computer Programmer

OBJECTIVE

Writing solid software for meaningful applications that have a positive impact on the world.

EXPERIENCE

DEVELOPER • MICROSOFT • 2007-2013 Wrote software for cloud platform involving distributed

computing, databases, and logging.

LEADERSHIP

Java, Python, C++, SQL,

SOFTBALL TEAM CAPTAIN • SPELMAN COLLEGE • 2003 Led team to division championship, responsible for coordinating

Hello

I am currently a second year Ph.D. student at UMass Lowell in the Text-Machine Lab working with Anna Rumshisky. My research interests at this moment are particularly focused on applying Deep Learning methods in Natural Language Processing.

A Ph.D. Student at UMass Lowell

ether computer scientists, mathematicians, physicists, social

e, and Cryptography at Microsoft Research Redmond.

the Theory Group. Her research areas include pha

d dynamical properties of large networks, p

papers and the co-inventor o

tudes in

s from

jer of

Adam Kalai Principal Researcher

Contact Info 8. (857) 453-6323 🖭 Email

Microsoft Research Office 12038 Cambridge, MA 02142

Sahin Cem Geyik

Computer Science Department Rensselaer Polytechnic Institute TROY, NY, 12180 email: sahincem² Krishnaram Kenthapadi

Jennifer Chayes

out Projects Publications Videos

Krishnaram Kenthapadi is part of the AI team at LinkedIn, where he leads the fairness, transparency, explainability (AETHER) Committee. He shaped the technical roadmap and led the privacy/modeling efforts for LinkedIn Salary intersection of members, recruiters, and career opportunities. Previously, he was a Researcher at Microsoft Researcher Science from Stanford University in 2006, under the supervision of Professor Rajeev Motwani. Before joining Stan

Krishnaram's expertise is in the areas of fairness/transparency/explainability/privacy in AI/ML systems, algorithms 17+ years of experience (including 12+ years in industry after his PhD), working on challenging problems in these fairness/privacy, and improved business metrics for existing products via technology transfers. He has collaborated

his fields of interest. He serves regularly on the program committees of KDD, WWW, WSDM, and related confere have successfully completed and best case studies paper award, SDDA best student paper award, and WWW best paper award and best case studies paper award.

About

I have been fun proble

accessibil

be less bi

Previousl

fortunate

Started working at Turn Inc. as an Applied Scientist.

Christian Borgs Deputy Managing Director, Microsoft Research New England

Contact Info H Website

Research areas Mathematics

Christian Borgs is deputy managing director and co-fo

December -----

Copyright @ 2020 Maria De-Arteada

About Projects Publications Videos

. Her work is inherently interdisciplinary: she collaborates with political scientists, sociologists, networks, document collections, press releases, meeting transcripts, and news articles. To complement this agenda, she also studies issues of fairness, accountability, and transparency as they relate to machine learning. Hanna's research has had broad impact in machine learning, natural language processing, and computational social science. In 2014, she was named

Sci

found

structura about

search New England in Cambridge,

Alexandra Chouldechova Assistant Professor of Statistics and Public Policy

Heinz College, Carnegie Mellon University Office: Hamburg Hall 2224 Email: achould(at)cmu.edu Phone: 412-268-4414

entists, and biologists, and helping to lay the foundations

aves joined Microsoft Research in 1997, when she co-

transitions in discrete mathematics and computer science.

chanism design, and graph algorithms. She is the co-author of

About

Education

ennifer Tour Chayes is Technical Fellow and Managing Director of Aicrosoft Research New England in Cambridge,

Assachusetts, which she co-founded in 2008, and Microsoft Research New York City, which she co-founded in 2012, and

crosoft Research Montreal since 2017. These three laboratories, re widely renowned interdisciplinary centers, bringing

ata science. Prior to founding these labs, Chayes was Research Area Manager for Mathematics, Theoretical Computer

it 30 patents

Ph.D. in Statistics, Stanford University, 2014 B.Sc. in Mathematical Statistics, University of Toronto, 2005-2009

Research

My research focuses on problems related to fairness in predictive modeling. I work on better understanding how to assess black-box predictors for potentially unanticipated biases that could lead to discriminatory practices. Questions that I am actively investigating include:

Under what conditions can disparate impact arise?

How can we quantitatively characterize fairness?

How can we use such characterizations to develop improved systems that are less likely to result in disparate impact?

IFAT*'19]

Linked in

Alexat C7 Publication

Bias in Bios dataset

• 400k online biographies* through Common Crawl.

"Xxx Xxx is a(n) (xxx) [title]...he/she..." title ∈ {common BLS SOC titles}

<u>A</u>lexandra <u>C</u>houldechova <u>is an</u> Assistant **Professor** of Statistics and Public Policy at Carnegie Mellon University's Heinz College of Informations Systems and Public Policy. <u>She</u> received <u>her</u> B.Sc. from the University of Toronto in 2009, and in 2014 <u>she</u> completed her Ph.D. in Statistics at Stanford University. While at Stanford, <u>she</u> also worked at Google and Symantec on developing statistical assessment methods for information retrieval systems.

Classification problem: classify title to one of 28 categories using biography text

[FAT*'19]

Learning pipeline

Input data: Biographies

Semantic representation + learning algorithm:

- 1. Bag-of-words + Logit
- 2. Word embedding + Logit
- 3. Word embedding + DNN

Objective: Predict Y = *Occupation*

Enter the bio

She is a fifth year PhD student in the joint Machine Learning and Public Policy program at Carnegie Mellon University's Machine Learning Department and Heinz College. She is co-advised by Prof. Artur Dubrawski and Prof. Alexandra Chouldechova, and she is part of the Auton Lab.

Currently, her main focus is algorithmic fairness, studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support. She is passionate about developing novel machine learning algorithms that are

PREDICT TITLE

she is a fifth year phd student in the joint machine learning and public policy program at carnegie mellon university <unk> s machine learning department and heinz college . she is co-advised by prof. artur <unk> and prof. alexandra chouldechova , and she is part of the auton lab . currently , her main focus is algorithmic fairness , studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support . she is passionate about developing novel machine learning algorithms that are motivated by existing policy problems , and understanding how machine learning can better help us overcome important societal challenges . prior to graduate school she received her b.sc . in mathematics from universidad nacional de colombia and worked as a journalist for one of colombia <unk> s main news magazine , semana . she is the recipient of a microsoft

IFAT*'191

HE

SHE

How do predictions change if explicit gender indicators are swapped?

Currently, her main focus is algorithmic fairness, studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support. She is passionate about developing novel machine learning algorithms that are

PREDICT TITLE

she is a fifth year phd student in the joint machine learning and public policy program at carnegie mellon university <unk> s machine learning department and heinz college . she is co-advised by prof. artur <unk> and prof. alexandra chouldechova , and she is part of the auton lab . currently , her main focus is algorithmic fairness , studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support . she is passionate about developing novel machine learning algorithms that are motivated by existing policy problems , and understanding how machine learning can better help us overcome important societal challenges . prior to graduate school she received her b.sc . in mathematics from universidad nacional de colombia and worked as a journalist for one of colombia <unk> s main news magazine , semana . she is the receipient of a microsoft

teacher

Copyright @ 2020 Maria De-Arteaga

She \rightarrow he

SHE

HE

Enter the bio

He is a fifth year PhD student in the joint Machine Learning and Public Policy program at Carnegie Mellon University's Machine Learning Department and Heinz College. He is co-advised by Prof. Artur Dubrawski and Prof. Alexandra Chouldechova, and he is part of the Auton Lab.

Currently, his main focus is algorithmic fairness, studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support. He is passionate about developing novel machine learning algorithms that are motivated

REDICT TITLE

he is a fifth year phd student in the joint machine learning and public policy program at carnegie mellon university <unk> s machine learning department and heinz college . he is co-advised by prof. artur <unk> and prof. alexandra chouldechova , and he is part of the auton lab . currently , his main focus is algorithmic fairness , studying how to measure and prevent bias and discrimination that may arise when using machine learning for decision support . he is passionate about developing novel machine learning algorithms that are motivated by existing policy problems , and understanding how machine learning can better help us overcome important societal challenges . prior to graduate school he received his b.sc . in mathematics from universidad nacional de colombia and worked as a journalist for one of colombia <unk> s main news magazine , semana . he is the recipient of a microsoft

software_engineer

'FAT*'19]

14.7% of female rappers who would only be correctly classified if using male gender pronouns, are mistakenly classified as models.

	Women			Men	
y^1	y^2	$\Pi_{\text{female},(y^1,y^2)}$	y^1	y^2	$\Pi_{\text{male},(y^1,y^2)}$
model	rapper	14.7%	attorney	paralegal	7.1%
teacher	pastor	8.5%	architect	interior designer	4.7%
professor	software engineer	6.5%	professor	dietitian	4.3%
professor	surgeon	4.8%	photographer	interior designer	3.5%
physician	surgeon	3.8%	teacher	yoga teacher	3.3%
(incorrect) prediction w own pronou	(correct) prediction (correct) prediction (correct) prediction (correct) (co	ction			

Copyright @ 2020 Iviaria De-Arteaga

Compounding imbalance

Theorem [**FAT*'19**]: If female fraction p < 0.5 and gender gap < 0, then female fraction in true positives < p.

(analogous for men)

Compounding injustice [Hellman'18] If initial imbalance constitutes injustice: Model's prediction is informed by, and compounds, previous injustice.

[FAT*'19]

Compounding imbalances

Surgeons

females in data: 14.6%

[FAT*'19]

Compounding imbalances

Copyright @ 2020 Maria De-Arteaga

Removing explicit gender indicators not enough

Copyright @ 2020 Maria De-Arteaga

28

Can we mitigate the compounding imbalance effect,

- without assuming access to protected attributes (illegal / unavailable)?
- accounting for **intersectionality**?

[AIES'19]

Bias to fight bias? Markisha Latisha Amanda Tyrique Takiyah Erika Zoe Yael Moses Renee Michal Shai Widely used word embeddings contain biases associated to people's names that align with societal stereotypes [AIES'19]

Outline

1. Risks of compounding injustices

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019) <u>Maria De-Arteaga</u> (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Adam Kalai (MSR)

2. What are the biases in my word embedding?

What are the biases in my word embedding? (AIES 2019)

Nathaniel Swinger⁼ (Lexington HS), <u>Maria De-Arteaga</u>⁼ (CMU), Neil Thomas Heffernan IV (Shrewsbury HS), Mark Leiserson (UMD), Adam Kalai (MSR)

3. Using bias to fight bias

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019) Alexey Romanov (UMASS), <u>Maria De-Arteaga</u> (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna Rumshisky (UMASS), Adam Kalai (MSR)

Word embeddings

1	A	B	С	D	E	F	G	Н	11	J	ĸ	L
1	the	0.056	0.043	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.08
2	cat	0.072	0.076	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
3	dog	0.088	0.099	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07
4	nurse	0.03	0.018	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.09
5	doctor	0.097	0.093	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.03
6	king	0.013	0.059	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.033
7	queen	0.087	0.072	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.076
8	bird	0.042	0.044	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0

Word embeddings

Man :: computer programmer

Woman ::

1	A	B	С	D	E	F	G	Н	1	J	K	L
1	the	0.056	0.043	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.083
2	cat	0.072	0.076	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
3	dog	0.088	0.099	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07:
4	nurse	0.03	0.018	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.093
5	doctor	0.097	0.093	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.03
6	king	0.013	0.059	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.033
7	queen	0.087	0.072	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.076
8	bird	0.042	0.044	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0

Word embeddings

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

1	A	B	С	D	E	F	G	н	1	J	K	L
1	the	0.056	0.043	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.083
2	cat	0.072	0.076	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
3	dog	0.088	0.099	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07
4	nurse	0.03	0.018	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.09
5	doctor	0.097	0.093	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.0
6	king	0.013	0.059	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.03
7	queen	0.087	0.072	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.07
8	hird	0.042	0.044	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0
nurse ('nərs) n., pl., -s **1.** A woman trained to care for the sick or infirm, especially in a hospital.

computer programmer (kəm'pju:tə 'prəʊgræmə) n., pl., -s 1. A man who writes programs for the operation of computers, especially as an occupation.

BAD because compounds biases

Word embeddings

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

1	A	В	С	D	E	F	G	н	111	J	К	L
1	the	0.056	0.000	0.051	0.08	0.006	0.041	0.032	0.011	0.057	0.004	0.083
2	cat	0.072	0.000	0.1	0.085	0.055	0.082	0.058	0.017	0.011	0.062	0.02
З	dog	0.088	0.000	0.028	0.059	0.06	0.059	0.039	0.09	0.001	0.031	0.07:
4	nurse	0.03	0.000	0.058	0.074	0.055	0.028	0.025	0.054	0.094	0.052	0.093
5	doctor	0.097	0.000	0.035	0.057	0.044	0.052	0.046	0.055	0.072	0.055	0.03
6	king	0.013	000.0	0.024	0.032	0.038	0.078	0.052	0.067	0.05	0.087	0.033
7	queen	0.087	0.000	0.029	0.042	0.05	0.083	0.095	0.012	0.098	0.009	0.076
8	hird	0.042	0.000	0.006	0.003	0.003	0.082	0.034	0.024	0.003	0.05	0.0

Word embeddings

What are the biases in my word embedding? (beyond gender bias)

[Greenwald'98]

Implicit association between categories?

[Greenwald'98]

Implicit association between categories?

[Greenwald'98]

Female

Setting 1

Career

Family

Male

[Greenwald'98]

Female

Career

Male

Family

Salary

[Greenwald'98]

Female

Career

Male

Family

Paul

[Greenwald'98]

Female

Career

Male

Family

Emily

[Greenwald'98]

Female

Career

Male

Family

Wedding

[Greenwald'98]

Female

Setting 2

Family

Career

Male

[Greenwald'98]

Female

Family

Male

Career

Salary

[Greenwald'98]

Female

Family

Male

Career

Emily

[Greenwald'98]

Female

Family

Male

Career

Wedding

[Greenwald'98]

Female

Family

Male

Career

John

[Greenwald'98]

Differences in average response time between **setting 1** and **setting 2**?

[Caliskan et al, 2017]

[Caliskan et al, 2017]

[Caliskan et al, 2017]

- 1. Which sets X_1, X_2, A_1, A_2 should we consider?
- 2. How to deal with the combinatorial explosion that arises when considering intersectional groups?

[Caliskan et al, 2017]

Is bias X in my word embedding? [Caliskan'17]

What are the biases in my word embedding? [Swinger* and De-Arteaga* et al, AIES, 2019]

[Swinger* and De-Arteaga* et al, 2018]

$$g(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{X}_i - \mu) \cdot (\overline{A}_i - \overline{A})$$

where $\mu \stackrel{\text{def}}{=} \begin{cases} \overline{\mathcal{X}} & \text{for } n = 1, \\ \sum_i \overline{X}_i / n & \text{for } n \ge 2. \end{cases}$

[Swinger* and De-Arteaga* et al, 2018]

$$g(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{X}_i - \mu) \cdot (\overline{A}_i - \overline{A})$$

where $\mu \stackrel{\text{def}}{=} \begin{cases} \overline{\mathcal{X}} & \text{for } n = 1, \\ \sum_i \overline{X}_i / n & \text{for } n \ge 2. \end{cases}$

n=2 \longrightarrow Lemma 1. For any $X_1, X_2 \subseteq \mathcal{X}$ of equal sizes $|X_1| = |X_2|$ and any nonempty $A_1, A_2 \subseteq \mathcal{A}$, $s(X_1, A_1, X_2, A_2) = 2|X_1| g(X_1, A_1, X_2, A_2)$

[Swinger* and De-Arteaga* et al 2018]

$$g(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{X}_i - \mu) \cdot (\overline{A}_i - \overline{A})$$

where $\mu \stackrel{\text{def}}{=} \begin{cases} \overline{\mathcal{X}} & \text{for } n = 1, \\ \sum_i \overline{X}_i / n & \text{for } n \ge 2. \end{cases}$

Lemma 1. For any $X_1, X_2 \subseteq \mathcal{X}$ of equal sizes $|X_1| = |X_2|$ and any nonempty $A_1, A_2 \subseteq \mathcal{A}$, $s(X_1, A_1, X_2, A_2) = 2|X_1| g(X_1, A_1, X_2, A_2)$

n=1 \longrightarrow Lemma 2. For any nonempty sets $X \subset \mathcal{X}$, $A \subset \mathcal{A}$, let their complements sets $X^c = \mathcal{X} \setminus X$ and $A^c = \mathcal{A} \setminus A$. Then,

$$g(X,A) = 2g(X,A,\mathcal{X},\mathcal{A}) = 2\frac{|X^c|}{|\mathcal{X}|}\frac{|A^c|}{|\mathcal{A}|}g(X,A,X^c,A^c)$$

[Swinger* and De-Arteaga* et al 2018]

$$y(X_1, A_1, \dots, X_n, A_n) \stackrel{\text{def}}{=} \sum_{i=1}^n (\overline{X}_i - \mu) \cdot (\overline{A}_i - \overline{A})$$

where $\mu \stackrel{\text{def}}{=} \begin{cases} \overline{\mathcal{X}} & \text{for } n = 1, \\ \sum_i \overline{X}_i / n & \text{for } n \ge 2. \end{cases}$

Lemma 1. For any $X_1, X_2 \subseteq \mathcal{X}$ of equal sizes $|X_1| = |X_2|$ and any nonempty $A_1, A_2 \subseteq \mathcal{A}$, $s(X_1, A_1, X_2, A_2) = 2|X_1| g(X_1, A_1, X_2, A_2)$

Lemma 2. For any nonempty sets $X \subset \mathcal{X}$, $A \subset \mathcal{A}$, let their complements sets $X^c = \mathcal{X} \setminus X$ and $A^c = \mathcal{A} \setminus A$. Then,

$$g(X,A) = 2g(X,A,\mathcal{X},\mathcal{A}) = 2\frac{|X^c|}{|\mathcal{X}|} \frac{|A^c|}{|\mathcal{A}|} g(X,A,X^c,A^c)$$

n>1 \longrightarrow Lemma 3. For any n > 1 and nonempty $X_1, X_2, \dots, X_n \subseteq \mathcal{X}$ and $A_1, A_2, \dots, A_n \subseteq \overline{\mathcal{A}}$, (decomposition) $g(X_1, A_1, \dots, X_n, A_n) = \sum_{i \in [n]} g(X_i, A_i) - \sum_{i,j \in [n]} \frac{g(X_i, A_j)}{n}$

Unsupervised Bias Enumeration (UBE) algorithm

Copyright @ 2020 Maria De-Arteaga

61

Input

	name	meaning	default
	WE	word embedding	w2v
Attributes —	$\rightarrow \chi$	set of names	SSA
	n	number of target groups	12
	\overline{m}	number of categories	64
	M	number of frequent lower-case words	30,000
	t	number of words per WEAT	3
	α	false discovery rate	0.05

Step 1: Discover groups

w2v F1	w2v F2	w2v F3	w2v F4	w2v F5	w2v F6	w2v F7	w2v F8	w2v F9	w2v F10	w2v F11	w2v F12
Amanda	Janice	Marquisha	Mia	Kayla	Kamal	Daniela	Miguel	Yael	Randall	Dashaun	Keith
Renee	Jeanette	Latisha	Keva	Carsyn	Nailah	Lucien	Deisy	Moses	Dashiell	Jamell	Gabe
Lynnea	Lenna	Tyrique	Hillary	Aislynn	Kya	Marko	Violeta	Michal	Randell	Marlon	Alfred
Zoe	Mattie	Marygrace	Penelope	Cj	Maryam	Emelie	Emilio	Shai	Jordan	Davonta	Shane
Erika	Marylynn	Takiyah	Savanna	Kaylei	Rohan	Antonia	Yareli	Yehudis	Chace	Demetrius	Stan
+581	+840	+692	+558	+890	+312	+391	+577	+120	+432	+393	+494

Step 1: Discover groups

w2v F1	w2v F2	w2v F3	w2v F4	w2v F5	w2v F6	w2v F7	w2v F8	w2v F9	w2v F10	w2v F11	w2v F12
Amanda	Janice	Marquisha	Mia	Kayla	Kamal	Daniela	Miguel	Yael	Randall	Dashaun	Keith
Renee	Jeanette	Latisha	Keva	Carsyn	Nailah	Lucien	Deisy	Moses	Dashiell	Jamell	Gabe
Lynnea	Lenna	Tyrique	Hillary	Aislynn	Kya	Marko	Violeta	Michal	Randell	Marlon	Alfred
Zoe	Mattie	Marygrace	Penelope	Cj	Maryam	Emelie	Emilio	Shai	Jordan	Davonta	Shane
Erika	Marylynn	Takiyah	Savanna	Kaylei	Rohan	Antonia	Yareli	Yehudis	Chace	Demetrius	Stan
+581	+840	+692	+558	+890	+312	+391	+577	+120	+432	+393	+494
98% F	98% F	89% F	85% F	78% F	65% F	59% F	56% F	40% F	27% F	5% F	4% F
1983	1968	1978	1982	1993	1991	1985	1986	1989	1981	1984	1976
4% B	8% B	48% B	10% B	2% B	7% B	4% B	2% B	5% B	10% B	32% B	6% B
4% H	4% H	3% H	9% H	1% H	4% H	9% H	70% H	10% H	3% H	5% H	3% H
3% A	3% A	1% A	11% A	1% A	32% A	4% A	8% A	5% A	4% A	3% A	5% A
89% W	84% W	47% W	69% W	95% W	56% W	83% W	21% W	79% W	83% W	59% W	86% W

Step 1: Discover groups

Step 2: Discover word categories


```
[AIES'19]
```


Step 4: Establish statistical significance

Step 4: Establish statistical significance

Step 4: Establish statistical significance

$$\sigma_{ij} = (\overline{\boldsymbol{X}}_i - \mu) \cdot (\overline{\boldsymbol{A}}_{ij} - \overline{\boldsymbol{\mathcal{A}}})$$

Step 4: Establish statistical significance

$$\sigma_{ij} = (\overline{\boldsymbol{X}}_i - \mu) \cdot (\overline{\boldsymbol{A}}_{ij} - \overline{\boldsymbol{\mathcal{A}}})$$

Is $\sigma_{i,i}$ significantly large?

Step 4: Establish statistical significance

1. Rotate X: $X \rightarrow XUr$

Step 4: Establish statistical significance

2. Find $A_{i,j,r}$

Step 4: Establish statistical significance

Copyright @ 2020 Maria De-Arteaga

[AIES'19]

3. Calculate $\boldsymbol{\sigma}_{i,j,r}$

Step 4: Establish statistical significance

3. Calculate $\boldsymbol{\sigma}_{i,j,r}$

Step 4: Establish statistical significance

Copyright @ 2020 Maria De-Arteaga

[AIES'19]

3. Calculate p-value:

$$p_{i,j} = [\delta(\sigma_{i,j} > \sigma_{i,j,r}) + 1] / [R + 1]$$

r = 1,2,...,10k

Step 4: Establish statistical significance

4. Determine critical p-value, *a*-bound guarantee on false discovery rate (*Benjamini-Hochbergh*)

Step 4: Establish statistical significance

Disclaimer

The biases in the following slides contain offensive stereotypes. These do not reflect our views.

98% F 1983 4% B 4% H 89% W 3% A	98% F 1968 8% B 4% H 84% W 3% A	89% F 1978 48% B 3% H 47% W 1% A	85% F 1982 10% B 9% H 69% W 11% A	78% F 1993 2% B 1% H 95% W 1% A	65% F 1991 7% B 4% H 56% W 32% A	59% F 1985 4% B 9% H 83% W 4% A	56% F 1986 2% B 70% H 21% W 8% A	40% 1 1989 5% B 10% 1 79% 7 5% A
	cookbook, baking, baked goods	sweet potatoes, macaroni, green beans			saffron, halal, sweets	mozzarella, foie gras, caviar	tortillas, salsa, tequila	koshe humn bagel
herself, hers, moms	husband, homebound, grandkids	aunt, niece, grandmother	hubby, socialite, cuddle	twin sister, girls, classmate	elder brother, dowry, refugee camp			berea immi emigi
hostess, cheerleader, dietitian	registered nurse, homemaker, chairwoman		supermodel, beauty queen, stripper	helper, getter, snowboarder	shopkeeper, villager, cricketer		translator, interpreter, smuggler	
	log cabin, library, fairgrounds	front porch, carport, duplex	racecourse, plush, tenements	picnic tables, bleachers, concession stand	locality, mosque, slum	prefecture, chalet, sauna		synag const hillto
Copyright ©	2019 Maria De-Arte	pastor,	goddess,		fatwa,	monastery,	rosary,	rabbis

Qualification:

36 names, 3 per group +1 per name labeled in correct group

Emb.	# significant	% accurate	% offensive
w2v	235	72%	35%
fast	160	80%	38%
glove	442	48%	24%

Disclaimer

The biases in the following slides contain offensive stereotypes. These do not reflect our views or the views of crowd workers.

Emb.	# significant	% accurate	% offensive
w2v	235	72%	35%
fast	160	80%	38%
glove	442	48%	24%

Word2Ve	fastText trained on the Web			GloVe trained on the Web				
Miguel	Dashaun	Kamal	Marquell	Ahmed	Alejandra	Amina	Alejandra	Kylee
Deisy	Jamell	Nailah	Antwan	Shanti	Maricella	Yair	Epifanio	Shaye
Violeta	Marlon	Kya	Dakari	Mariyah	Ona	Rani	Monalisa	Tayla
Emilio	Davonta	Maryam	Pernell	Siddharth	Fabiola	Danial	Eulalia	Latasha
Yareli	Demetrius	Rohan	Jarred	Yasmin	Sulema	Safa	Alicea	Jessi
illegal immigrant	aggravated robbery	subcontinent	n****	jihad	S*****	turban	cartel	pornstar
drug trafficking	aggravated assault	tribesmen	f****	militants	maid	saree	undocumented	hottie
deported	felonious assault	miscreants	dreads	caliphate	busty	hijab	culpable	nubile

*These associations do not reflect our views or those of the crowd workers.

Why does this matter?

- Representational harms
- Harmful bias encoded in semantic representation used for learning
- Removing names is not enough to get rid of bias!
 - Words in category clusters may be used as proxy for gender/race/etc

Outline

1. Risks of compounding injustices

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting (FAT* 2019) <u>Maria De-Arteaga</u> (CMU), Alexey Romanov (UMASS), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Adam Kalai (MSR)

2. What are the biases in my word embedding?

What are the biases in my word embedding? (AIES 2019) Nathaniel Swinger⁼ (Lexington HS), <u>Maria De-Arteaga</u>⁼ (CMU), Neil Thomas Heffernan IV (Shrewsbury HS), Mark Leiserson (UMD), Adam Kalai (MSR)

3. Using bias to fight bias

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (NAACL 2019) Alexey Romanov (UMASS), <u>Maria De-Arteaga</u> (CMU), Hanna Wallach (MSR), Jennifer Chayes (MSR), Christian Borgs (MSR), Alexandra Chouldechova (CMU), Sahin Geyik (LinkedIn), Krishnaram Kenthapadi (LinkedIn), Anna Rumshisky (UMASS), Adam Kalai (MSR)

Bias to fight bias? Markisha Latisha Amanda Tyrique Takiyah Erika Zoe Yael Moses Renee Michal Shai Widely used word embeddings contain biases associated to people's names that align with societal stereotypes [AIES'19]

Bias to fight bias? Markisha Latisha Amanda Tyrique Takiyah Erika Zoe Yael Moses Renee Michal $P(t = \text{Engineer}|x_i, \theta)?$ $P(t = \text{Engineer}|x_i, \theta)?$ Shai "What's in a name? That which we call a rose By any other name would smell as sweet." William Shakespeare, Romeo and Juliet

Reducing Bias in Bios

Reducing Bias in Bios

- Typically, minimize loss function: \mathcal{L}
- Proposed: regularize accuracy gaps: $\mathcal{L}_{total} = \mathcal{L} + \lambda \cdot \mathcal{L}_{CL}$

Reducing Bias in Bios

$$\begin{aligned} \boldsymbol{\mathscr{L}}_{CluCL} \left(\boldsymbol{\theta} \right) &: \text{Cluster constrained loss} \\ \boldsymbol{\mathscr{L}}_{k,t} \left(\boldsymbol{\theta} \right) &: \text{cluster } k \text{ loss for title } t \qquad \mathcal{L}_{CluCL} \left(\boldsymbol{\theta} \right) = -\frac{\sum_{j,k,t} (\mathcal{L}_{j,t}(\boldsymbol{\theta}) - \mathcal{L}_{k,t}(\boldsymbol{\theta}))^2}{NK(K-1)} \end{aligned}$$

Reducing Bias in Bios

$$\mathcal{L}_{CoCL}(\theta): \text{Covariance constrained loss}$$
$$\mathcal{L}_{CoCL}(\theta) = \frac{1}{N} \sum_{t} ||E_{i:y_i=t}[(v_i^{\text{name}} - \overline{v}_t) \cdot (p(t|x_i, \theta) - \overline{p}_t)]||_2$$

Accuracy / fairness tradeoff

$$\operatorname{Gap}_{r,c} = \operatorname{TPR}_{r,c} - \operatorname{TPR}_{\sim r,c}$$

$$\operatorname{Gap}_{r}^{\operatorname{RMS}} = \sqrt{\frac{1}{|C|} \sum_{c \in C} \operatorname{Gap}_{r,c}^{2}}$$

Unconstrained

Accuracy / fairness tradeoff

$$\operatorname{Gap}_{r,c} = \operatorname{TPR}_{r,c} - \operatorname{TPR}_{\sim r,c}$$

$$\operatorname{Gap}_{r}^{\operatorname{RMS}} = \sqrt{\frac{1}{|C|} \sum_{c \in C} \operatorname{Gap}_{r,c}^{2}}$$

Unconstrained

Results: UCI Adult dataset

Results: Bias in bios dataset

		Root M Gende	1ean Square r Accuracy Gap	Root Mean Square Race Accuracy Gap		
				/		
Model	R	Accuracy Balanced	RMS GAG	RMS RAG	Max GAG	Max RAG
Regular	0	0.788	0.173	0.051	0.511	0.121
CluCL CluCL	1 2	0.784 0.781	0.168 0.165	0.048 0.047	0.494 0.486	0.120 0.114
CoCL CoCL	1 2	0.785 0.779	0.168 0.169	$0.048 \\ 0.048$	0.507 0.512	0.109 0.116

What changed?

(b) The Bios dataset, occupation "surgeon"

(a) The Adult dataset

Summary

- Characterized risk of compounding injustices in supervised learning [FAT*'19]
- Large-scale study of automated recruiting: not enough to remove gender indicators [FAT*'19]
- Proposed algorithm to enumerate biases in word embeddings [AIES'19]
- Proposed methodology to mitigate biases without assuming access to protected attributes [NAACL'19 7]
- A long way to go to solve the problem!

Summary

- Characterized risk of **compounding injustices** in supervised learning [FAT*'19]
- Large-scale study of automated recruiting: not enough to remove gender indicators [FAT*'19]
- Proposed algorithm to enumerate biases in word embeddings [AIES'19]
- Proposed methodology to mitigate biases without assuming access to protected attributes [NAACL'19 7]
- A long way to go to solve the problem!

Thanks!

mdeartea@andrew.cmu.edu